

Office of Future Mobility and Electrification Advanced Air Mobility (AAM) Statewide Mobility Challenge – EGLE FAQ

February 6, 2026

Eligibility and Application

1. What is the required Technology Readiness Level (TRL)?

Ideally, EGLE is seeking proposals with TRL levels 6+.

2. Is US company status required? I noticed the W9 field; we currently have an LLC in the United States.

You do not need to be located in the US but you need to be able to be on site as needed throughout the duration of the project.

3. Do we need to demonstrate revenue within the United States?

No.

4. Is this an individual application or a consortium?

Applicants can apply individually or as a consortium, however partnerships are encouraged.

5. Is subcontracting permitted?

Yes, it would be submitted as a partnership and subcontract agreements would be managed by the prime applicant during the program period.

6. If so, do the subcontractors need to be based in the United States?

No subcontractors don't need to be based in the US but the applicant and the subs needs to be able to be on site as needed throughout the duration of the project.

7. I wonder as a university research group, are we qualified for this opportunity?

Yes, universities can apply if they have the capability to respond to the scope of work.

Partnerships are encouraged across industry groups, academia and AAM stakeholders.

8. Does an application need to address both case studies

No. A single applicant may receive the full award if they can address both case studies effectively. If not, EGLE may award two separate contracts, one for water, one for odor. This mirrors how other statewide mobility challenges have been structured

9. Are university research groups eligible?

Yes. Universities are encouraged to apply. They may apply independently or in partnership with industry if certain scope elements require complementary expertise.

10. What are the minimum requirements for eligibility?

*Work in partnership with the identified state agency (EGLE);
Provide matching funds (financial or in-kind);
Be physically present in Michigan as needed for deployment;
Meet technical, regulatory, and interoperability requirements described;
Submit a full application in WizeHive, including budget, team resumes, and compliance documents.*

11. Does submitting the separate project-interest form affect this challenge?

No. That form belongs to a different OFME funding mechanism. Applicants will be contacted separately by OFME staff for that program.

12. Is this intended as a Proof of Concept (PoC) or a permanent project? If it is a PoC, what is the expected duration?

The pilot will transition into a permanent project for the department, but it is not required. The expected duration will be 12-18 months from the contract start date.

13. Will there be an extension for the application due date?

Yes, the applications will be due February 20, 2026 instead of the previous date, February 13, 2026.

Award Information

14. What is the time range and funding amount for this opportunity?

The time range and funding amount for this opportunity are \$200,000 - \$400,000 (depends on how much scope your solution can address) and 12-18 months.

15. Is the grant reimbursement-based?

This is a reimbursement-based grant. Payments are tied to milestones that will be co-developed with awardees to support cash flow needs.

Scope

16. Does EGLE have trained pilots and a drone fleet?

Yes. EGLE has trained staff and a designated drone coordinator who ensures all aviation and agency protocols are followed. EGLE also maintains multiple drones currently in use for various agency needs.

17. Does water sampling require long-term deployment?

Not strictly. EGLE expects solutions that can operate in any water body—flowing or stagnant. The Grand River is used because it is more complex and better suited to evaluating scalability. Long-term fixed deployment is not required.

18. What water sensors does EGLE use?

Current in-field water sensors include pH, Temperature, Conductivity, Dissolved oxygen, Phycocyanin (blue-green algae pigment for HAB detection), and nitrate probes. EGLE notes that effective probes do not exist for most nutrients and none for bacteria, representing an opportunity for innovation.

19. Should applicants expect to collect water samples for lab analysis?

Generally, no. EGLE wants to avoid replicating traditional bottle-and-lab workflows. The challenge seeks: Real-time or near-real-time field measurements or Automated or drone-assisted sensor deployment. Lab samples may be used to verify sensor accuracy when needed.

20. What water samples suit drones vs. labs?

Drones and onboard sensors are best suited for real-time measurements such as temperature, dissolved oxygen, pH, transparency, conductivity, turbidity, and algal bloom indicators like phycocyanin. More complex testing—such as detailed chemical analyses, bacterial counts, and multi-nutrient chemistry—still requires laboratory methods and is outside the primary focus of this challenge. EGLE encourages innovations that expand in-field sensor capabilities, especially for nutrient detection. The intent is to avoid solutions that rely solely on drone-collected samples for lab analysis while still welcoming

technologies that can rapidly assess bacteria or nutrient levels on site.

21. Probe locations?

More probe locations and more frequent sampling lead to better environmental decisions. EGLE did not give a fixed number but stated that solutions enabling more sampling at more locations without increasing staff burden will be highly valued.

22. How large of an area might need to be monitored during odor investigations?

It varies. When EGLE receives an odor complaint, the geographic scope is unknown. The affected area may be small or extend over a larger region depending on meteorology and source.

23. What types of air/odor sensors does EGLE use today?

Hydrogen sulfide, particulate, TVOCs, SO₂, NO_x, and meteorological sensors.

24. How drones support odor investigations?

Drones can help: Rapidly scan broader areas; Locate sources; Characterize plume direction and intensity. They can also help identify chemical signatures, map odor intensity, visualize spatial patterns and enhance staff investigations with real-time data.

25. Why was the Grand River selected as the water case study area?

Because it is Michigan's largest watershed; Presents real-world complexity; Supports scalability testing; and provides immediately meaningful data for EGLE program decisions.

26. Why Southwest Detroit?

Because it is a region with: Dense industrial activity; Major transportation corridors; Adjacent residential neighborhoods; Longstanding community air quality concerns. This makes it ideal for evaluating community-impactful odor-monitoring technologies.

27. Is EGLE looking for off-the-shelf airborne monitoring systems?

No. EGLE is specifically seeking new technology development, not simple airborne

retrofits of existing systems. Innovation is especially needed in: Nutrient and bacterial water sensors; Automated water probe deployment; Real-time pollutant detection; and flexible, modular sensor platforms.

28. Are there data integration requirements?

Yes. Solutions that can deliver calibrated, geotagged, real-time data compatible with EGLE systems are strongly prioritized.

29. Are there regulatory/operational constraints?

Solutions must be fully compatible with: Aviation regulations; Environmental regulatory frameworks; Privacy constraints; Existing field operations; Scientific and data-quality standards and Applicants must demonstrate understanding of both the technology and the regulatory/environmental realities.

30. How can we request technical specifications (sensor details, dimensions, etc)?

EGLE will supply additional specifications, pictures, dimensions, and technical data. Email : OFMEMobilityChallenges@nextenergy.org for specific requests.

31. How are water and air quality data currently visualized or organized within EGLE?

Data are accessed through a combination of tools, including databases, GIS platforms, spreadsheets, reports, and web-based portals. While EGLE is not prescribing a specific data delivery format for this challenge, electronic delivery in a format that can be used across multiple applications is strongly preferred.

32. Are data primarily accessed through dashboards, portals, reports, or other tools?

Data are accessed through a combination of tools, including databases, GIS platforms, spreadsheets, reports, and web-based portals. While EGLE is not prescribing a specific data delivery format for this challenge, electronic delivery in a format that can be used across multiple applications is strongly preferred.

33. Are there limitations or challenges with existing public access methods?

EGLE is not asking applicants to create new public-facing data portals or tools as part of this challenge. The focus of this challenge is on data collection and delivery to the

agency.

34. Is increasing public awareness, understanding, or transparency around water and air quality indicators a current or future goal for EGLE?

Yes, EGLE works to make water and air quality data available and understandable to the public through existing data systems, reports, and communication tools. Data collected through EGLE programs often support public awareness and understanding of environmental conditions.

35. Are there specific audiences or use cases EGLE is most interested in supporting?

While data collected through this challenge could ultimately support public education and communication, applicants are not expected to design solutions for immediate or direct public data sharing. The primary goal of this challenge is to deliver high-quality data to EGLE. The agency will determine how to compile, synthesize, and communicate that data to external audiences as appropriate.

36. For applicants whose core innovation is in aerial systems, autonomy, and deployment rather than sensor chemistry, is EGLE open to partnerships where sensing innovation is advanced through collaboration with academic institutions or sensor focused partners during the pilot period?

EGLE-WRD is open to partnerships/collaboration with academic institutions.

37. When EGLE states that it is seeking new technology development rather than off the shelf airborne monitoring systems, does this include innovation in aerial deployment, automation, and system integration using existing validated sensors, or is EGLE primarily prioritizing the development of novel sensor chemistry and probe technologies?

The existing sensors available on the market could help with some odor response enhancements, however, a new novel approach to sensor chemistry and probe technologies is preferred.

38. How does EGLE weigh innovation in automated probe deployment and repeatable spatial sampling compared to innovation in the sensors themselves? For example, would a system that enables high frequency, multi-location probe deployment using

existing water quality sensors be considered a strong fit, even if laboratory analysis is still required for certain parameters?

We will consider all potential approaches including the example posed above. Our preference is to minimize the need for laboratory analysis but recognize there may be reasons for some lab analysis in the context of an overall proposal.

39. Would EGLE be interested in a solution that uses a drone equipped with commercially available, off-the-shelf probes capable of measuring the key water quality parameters identified in the challenge?

We are open to this approach if it makes sense in the context of other innovations in the broader proposal.